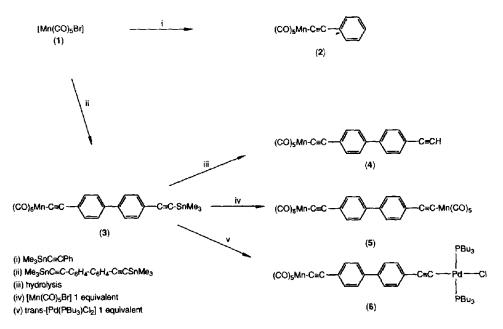
Journal of Organometallic Chemistry, 401 (1991) C43-C45 Elsevier Sequoia S.A., Lausanne JOM 21516PC

Preliminary communication

Synthesis of linked metal acetylide complexes for nonlinear optics

Simon J. Davies, Brian F.G. Johnson, Jack Lewis * and Muhammad S. Khan University Chemical Laboratory, Lensfield Road, Cambridge CB2 IEW (UK) (Received October 29th, 1990)


Abstract

Treatment of $[Mn(CO)_5Br]$ (1) with a slight excess of Me₁SnC=CPh affords the known species $[(CO)_5Mn(C=CPh)]$ (2), whereas reaction between 1 and Me₃SnC=CRC=CSnMe₃ (R = p-C₆H₄-C₆H₄) gives the bimetallic complex $[(CO)_5MnC=CRC=CSnMe_3]$ (3). This latter species is a good precursor for other syntheses, and treatment of 3 with a further equivalent of 1 gives $[(CO)_5MnC=CRC=CMn(CO)_5]$ (4), while 3 with *trans*-[Pd(PBu₃)₂Cl₂] affords $[(CO)_5MnC=CRC=CPd(PBu₃)_2Cl]$ (5).

Organic molecules and polymers which exhibit second- and third-order nonlinear optical properties continue to attract great interest [1]. One particular class of compound which has been much investigated recently is donor-acceptor substituted diphenyl acetylenes 4-D-C₆H₄C=CC₆H₄-4-A and their higher oligomers 4-D-C₆H₄(C=C)_nC₆H₄-4-A, which show large χ^2 values [2]. It has also been demonstrated that transition metal σ -acetylide complexes, when suitably substituted, may show large second-order optical nonlinearities [3,4]. We have recently described new synthetic routes to monomeric and oligomeric σ -acetylide species [5], and in this paper we show how our synthetic precedents may be used to obtain compounds of the type D-C=CRC=C-A, where D and A are electron donating and accepting transition metal fragments, respectively. The obvious relationship between such species and the donor-acceptor acetylenes suggests that such transition metal containing species may also show interesting nonlinear optical behaviour.

A suitable choice for the electron accepting metal fragment would involve an early transition metal centre with associated π -acid ligands, such as Mn(CO)₅, whereas the donor fragment should contain an electron rich metal ligated by Lewis base type ligands, such as Rh(PR₃)₄ or Pt(PR₃)₂Cl. A preliminary study indicated that treatment of [Mn(CO)₅Br] (1) with a slight excess of Me₃SnC=CPh afforded, after appropriate work up, the known complex [Mn(CO)₅(C=CPh)] (2) [6,7], in 42% yield (Scheme 1). This result is in contrast with the reported reaction between 1 and AgC=CPh which yields only decomposition products [7], and the relatively high yield make this reaction an attractive route to compound 2. In a similar manner the diacetylide reagent Me₃SnC=CRC=CSnMe₃ (R = p-C₆H₄) reacts with 1 to give the

0022-328X/91/\$03.50 © 1991 - Elsevier Sequoia S.A.

Scheme 1. The formation of linked metal acetylide complexes.

species $[(CO)_5MnC=CRC=CSnMe_3]$ (3), when a slight excess of the tin reagent is employed (Scheme 1). The compound 3 is fully characterised by its spectroscopic data [8*]. In the IR spectrum an absorption is observed at 2137 cm⁻¹ for the C=C stretch associated with the trimethyltin acetylide functionality; the corresponding stretch in the free ligand occurs at 2135 cm⁻¹, in addition to the other expected carbonyl and acetylide stretches. The presence of a Me₃Sn group is clearly seen in the ¹H NMR spectrum of 3.

Compound 3 has reactivity associated with its Me₃Sn group and so may be used as a precursor to other compounds. Hydrolysis of the trimethylstannyl group occurs readily and simply filtering a CH₂Cl₂ solution of 3 through a pad of silica gel affords the compound [(CO)₅MnC=CRC=CH] (4), which shows a =CH stretch in its IR spectrum, and two (AB)₂ patterns in its ¹H NMR spectrum, both observations being consistent with the proposed formulation. Treatment of 3 with one equivalent of 1 results in loss of the trimethylstannyl moiety and the formation of [(CO)₅MnC=CRC=CMn(CO)₅] (5), which may be purified by chromatography and crystallisation. The species 5 is again well characterised by its spectroscopic data [8]. The ¹H NMR spectrum of 5 is particularly informative as the aromatic protons appear as a simple (AB)₂ system, confirming the symmetrically substituted nature of the acetylene grouping. Compound 3 may also be used to synthesise the required donor-acceptor molecules. Treatment of 3 with one equivalent of *trans*-[Pd(PBu₁)₂Cl₂], followed by low temperature column chromatography and recrys-

^{*} Reference number with asterisk indicates a note in the list of references.

tallisation afforded the species $[(CO)_5 MnC = CRC = CPd(PBu_3)_2Cl]$ (6), in moderate yield (Scheme 1).

We are currently trying to extend our methodology to the incorporation of other transition metal fragments in similar donor-acceptor complexes, and to investigation of the properties of the species obtained.

References and notes

- (A) D.J. Williams, Angew. Chem., Int. Ed. Engl., 23 (1984) 690; (b) D.S. Chemia and J. Zyss (Eds.), Nonlinear Optical Properties of Organic Molecules and Crystals, Vols, 1, 2, Academic Press, Orlando, 1987; (c) R.A. Hann and D. Bloor (Eds.), Organic Materials for Non-linear Optics, Spec. Publ. No. 69, The Royal Society of Chemistry, London, 1989.
- 2 (a) T. Kurihara, H. Tabei and T. Kaino, J. Chem. Soc., Chem. Commun., (1987) 959; (b) J.W. Perry, A.E. Stiegman, S.R. Marder and D.R. Coulter, Ref. 1c, p. 189; (c) E.M. Graham, V.M. Miskowski, J.W. Perry, D.R. Coulter, A.E. Stiegman, W.P. Schaefer and R.E. Marsh, J. Am. Chem. Soc., 111 (1989) 8771.
- 3 S. Guha, C.C. Frazier, K. Kang and S.E. Finberg, Opt. Lett., 14 (1989) 952 and refs. therein.
- 4 T.B. Marder, G. Lesley, Z. Yuan, H.B. Fyfe, P. Chow, G. Stringer, I.R. Jobe, N.J. Taylor, I.D. Williams and S.K. Kurtz, in New Materials for Non-linear Optics, ACS Symposium Series, American Chemical Society, Washington, DC, in press.
- 5 (a) S.J. Davies, B.F.G. Johnson, M. Khan and J. Lewis, J. Chem. Soc., Chem. Commun., in press; (b) S.J. Davies, B.F.G. Johnson, J. Lewis and P.R. Raithby, J. Chem. Soc., Chem. Commun., in press.
- 6 N.A. Ustynyuk, V.N. Vinogradova and P.V. Petrovskii, Izv. Akad. Nauk SSSR, Ser. Khim., 3 (1982) 680.
- 7 D. Miguel and V. Riera, J. Organomet. Chem., 293 (1985) 379.
- 8 Spectroscopic data for 3: IR (hexane) cm⁻¹, ν (CO), 2144sh, 2044s, 2009s, ν (C=C), 2137m, 2117m, ¹H NMR (CD₂Cl₂), δ 0.36 (s, 9H, Me₃Sn), 7.04–7.92 (m, 8H, C₆H₄). 4: IR (hexane) cm⁻¹, ν (CO), 2138w, 2043s, 2008s. ν (C=C) 2114m; ν (=CH) 3314 s. ¹H NMR (CD₂Cl₂) δ 3.23 (s, 1H, =CH), 7.40, 7.42 [(AB)₂, 4H, C₆H₄, J(AB) 8], 7.49, 7.51 [(AB)₂, 4H, C₆H₄, J(AB) 8], 5: IR (hexane) cm⁻¹, ν (CO), 2144w, 2044s, 2009s; ν (C=C), 2117m. ¹H NMR (CD₂Cl₂), δ 7.38, 7.48 [(AB)₂, 8H, C₆H₄, J(AB) 7]. 6: IR (hexane) cm⁻¹, ν (CO) 2141w, 2044s, 2009s; ν (C=C) 2113m. ¹H NMR (CD₂Cl₂), δ 0.93, 1.45, 1.53, 1.77 (18H, PBu₃), 7.2–7.8 (m, 8H, C₆H₄). ³¹P NMR (CD₂Cl₂), δ 11.8.