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Abstract 

Treatment of [Mn(CO)sBr ] ( l )  with a slight excess of Me3SnC:::--CPh affords the known species 
[(CO)sMn(~-------CPh)] (2), whereas reaction between ! and Me3SnC::--CRC::--CSnMe 3 (R = p -CrHa-C6H4)  
gives the bimetallic complex [(CO)sMnC~2R~--CSnMe3] (3). This latter species is a good precursor for 
other syntheses, and treatment of 3 with a further equivalent of 1 gives [(CO)sMnC:::-CRC:::-CMn(CO)5 ] 
(4), while 3 with trans-[Pd(PBu3)2Cl2] affords [(CO)sMn~-CRC:::--CPd(PBu3)2C1 ] (5). 

Organic molecules and polymers which exhibit second- and third-order nonlinear 
optical properties continue to attract great interest [1]. One particular class of 
compound which has been much investigated recently is donor-acceptor substituted 
diphenyl acetylenes 4-D-CrH4C::--CCrH4-4-A and their higher oligomers 4-D- 
CrH4(C::--C),CrH4-4-A, which show large X 2 values [2]. It has also been demon- 
strated that transition metal o-acetylide complexes, when suitably substituted, may 
show large second-order optical nonlinearities [3,4]. We have recently described new 
synthetic routes to monomeric and oligomeric o-acetylide species [5], and in this 
paper we show how our synthetic precedents may be used to obtain compounds of 
the type D-C:::---CRC::---C-A, where D and A are electron donating and accepting 
transition metal fragments, respectively. The obvious relationship between such 
species and the donor-acceptor acetylenes suggests that such transition metal 
containing species may also show interesting nonlinear optical behaviour. 

A suitable choice for the electron accepting metal fragment would involve an 
early transition metal centre with associated ~r-acid ligands, such as Mn(CO)5, 
whereas the donor fragment should contain an electron rich metal ligated by Lewis 
base type ligands, such as Rh(PR3) 4 or Pt(PR3)2CI. A preliminary study indicated 
that treatment of [Mn(CO)sBr ] (1) with a slight excess of MeaSnC:::-CPh afforded, 
after appropriate work up, the known complex [Mn(CO)5(C:::---CPh)] (2) [6,7], in 42% 
yield (Scheme 1). This result is in contrast with the reported reaction between 1 and 
AgC:::--CPh which yields only decomposition products [7], and the relatively high 
yield make this reaction an attractive route to compound 2. In a similar manner the 
diacetylide reagent Me3SnC:::---CRC:::-CSnMe 3 (R =p-CrH4) reacts with 1 to give the 
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[Mn(CO)sBr] 
(1) 

i (CO)sMn'C----C 

(2) 

(CO)sMn.C~ C ~ _ ~ ~ C z c C _ S n M e 3  iv 

(3) 

(i) MeaSn~Ph 
(ii) Me3SnC~=C-CeH4-CsH4-C~C, SnMe3 
(iii) hydrolysis 
(iv) [Mn(CO)sBr] 1 equivalent 
(v) trans-[Pd(PBu3)CI2] 1 equivalent 

( C 0 ) s M n - C -------------------~C , , - = ~ ~ - = C H  

(4) 

(CO)sMn-C--zC ~ = ~ ~ - = C - M n ( C O ) s  

(5) PBu a 

(CO)sMn-C~C ~O~~=C --Id---C' 
PBu 3 

(s) 

Scheme 1. The formation of linked metal acetylide complexes. 

species [(CO)sMnC::--CR~--CSnMe3] (3), when a slight excess of the tin reagent is 
employed (Scheme 1). The compound 3 is fully characterised by its spectroscopic 
data [8*]. In the IR spectrum an absorption is observed at 2137 cm -1 for the C::--C 
stretch associated with the trimethyltin acetylide functionality; the corresponding 
stretch in the free ligand occurs at 2135 cm -I, in addition to the other expected 
carbonyl and acetylide stretches. The presence of a Me3Sn group is dearly seen in 
the 1H NMR spectrum of 3. 

Compound 3 has reactivity associated with its Me3Sn group and so may be used 
as a precursor to other compounds. Hydrolysis of the trimethylstannyl group occurs 
readily and simply filtering a CH2C12 solution of 3 through a pad of silica gel 
affords the compound [(CO)sMnC::---CRC::--CH ] (4), which shows a =CH stretch in 
its IR spectrum, and two (AB)2 patterns in its tH NMR spectrum, both observa- 
tions being consistent with the proposed formulation. Treatment of 3 with one 
equivalent of 1 results in loss of the trimethylstannyl moiety and the formation of 
[(CO)sMn~--CR~--:-~Mn(CO)5 ] (5), which may be purified by chromatography and 
crystallisation. The species 5 is again well characterised by its spectroscopic data [8]. 
The 1H NMR spectrum of 5 is particularly informative as the aromatic protons 
appear as a simple (AB)2 system, confirming the symmetrically substituted nature 
of the acetylene grouping. Compound 3 may also be used to synthesise the required 
donor-acceptor molecules. Treatment of 3 with one equivalent of t rans -  

[Pd(PBu3)2CI2], followed by low temperature column chromatography and recrys- 

* Reference number with asterisk indicates a note in the list of references. 
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t a l l i s a t i on  a f f o r d e d  the  species  [ ( C O ) s M n C : : - C R C : : - C P d ( P B u  3)2C1] (6), in  m o d e r a t e  
y ie ld  ( S c h e m e  1). 

W e  a re  c u r r e n t l y  t ry ing  to  e x t e n d  o u r  m e t h o d o l o g y  to  t he  i n c o r p o r a t i o n  o f  o t h e r  

t r a n s i t i o n  m e t a l  f r a g m e n t s  in s imi la r  d o n o r - a c c e p t o r  c o m p l e x e s ,  a n d  to  inves t iga -  
t ion  o f  the  p r o p e r t i e s  o f  the  species  o b t a i n e d .  
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